By Topic

Variable step-size sign natural gradient algorithm for sequential blind source separation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lianxi Yuan ; Sch. of Eng., Cardiff Univ., UK ; Wenwu Wang ; J. A. Chambers

A novel variable step-size sign natural gradient algorithm (VS-S-NGA) for online blind separation of independent sources is presented. A sign operator for the adaptation of the separation model is obtained from the derivation of a generalized dynamic separation model. A variable step size is also derived to better match the dynamics of the input signals and unmixing matrix. The proposed sign algorithm is appealing in practice due to its computational simplicity. Experimental results verify the superior convergence performance over conventional NGA in both stationary and nonstationary environments.

Published in:

IEEE Signal Processing Letters  (Volume:12 ,  Issue: 8 )