By Topic

An unequal packet loss resilience scheme for video over the Internet

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Xiaokang Yang ; Inst. for Infocomm Res., Singapore ; Ce Zhu ; Zheng Guo Li ; Xiao Lin
more authors

We present an unequal packet loss resilience scheme for robust transmission of video over the Internet. By jointly exploiting the unequal importance existing in different levels of syntax hierarchy in video coding schemes, GOP-level and Resynchronization-packet-level Integrated Protection (GRIP) is designed for joint unequal loss protection (ULP) in these two levels using forward error correction (FEC) across packets. Two algorithms are developed to achieve efficient FEC assignment for the proposed GRIP framework: a model-based FEC assignment algorithm and a heuristic FEC assignment algorithm. The model-based FEC assignment algorithm is to achieve optimal allocation of FEC codes based on a simple but effective performance metric, namely distortion-weighted expected length of error propagation, which is adopted to quantify the temporal propagation effect of packet loss on video quality degradation. The heuristic FEC assignment algorithm aims at providing a much simpler yet effective FEC assignment with little computational complexity. The proposed GRIP together with any of the two developed FEC assignment algorithms demonstrates strong robustness against burst packet losses with adaptation to different channel status.

Published in:

Multimedia, IEEE Transactions on  (Volume:7 ,  Issue: 4 )