By Topic

Electrostatically actuated resonant microcantilever beam in CMOS technology for the detection of chemical weapons

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Voiculescu, I. ; Dept. of Mech. & Aerosp. Eng., George Washington Univ., DC, USA ; Zaghloul, M.E. ; McGill, R.A. ; Houser, E.J.
more authors

The design, fabrication, and testing of a resonant cantilever beam in complementary metal-oxide semiconductor (CMOS) technology is presented in this paper. The resonant cantilever beam is a gas-sensing device capable of monitoring hazardous vapors and gases at trace concentrations. The new design of the cantilever beam described here includes interdigitated fingers for electrostatic actuation and a piezoresistive Wheatstone bridge design to read out the deflection signal. The reference resistors of the Wheatstone bridge are fabricated on auxiliary beams that are immediately adjacent to the actuated device. The whole device is fabricated using a 0.6-μm, three-metal, double-poly CMOS process, combined with subsequent micromachining steps. A custom polymer layer is applied to the surface of the microcantilever beam to enhance its sorptivity to a chemical nerve agent. Exposing the sensor with the nerve agent simulant dimethylmethylphosphonate (DMMP), provided a demonstrated detection at a concentration of 20 ppb or 0.1 mg/m3. These initial promising results were attained with a relatively simple design, fabricated in standard CMOS, which could offer an inexpensive option for mass production of a miniature chemical detector, which contains on chip electronics integrated to the cantilever beam.

Published in:

Sensors Journal, IEEE  (Volume:5 ,  Issue: 4 )