System Maintenance:
There may be intermittent impact on performance while updates are in progress. We apologize for the inconvenience.
By Topic

Digital topography models for Martian surfaces

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Stepinski, T. ; Lunar & Planetary Inst., Houston, TX, USA ; Vilalta, R.

We propose to use an unsupervised automated classification of topographic features on Mars in order to speed up geomorphic and geologic mapping of the planet. We construct a digital topography model (DTM), a multilayer grid that stores various kinds of topographical information for every pixel in a site. The method uses a probabilistic clustering algorithm to assign topographically meaningful labels to all pixels in the DTM. The results are displayed as a thematic map of topography. Resultant topographical features are characterized and compared using statistics of their constituent pixels. We demonstrate the usage of our method by classifying and characterizing the topography of a landscape in the Tisia Valles region on Mars. We discuss extensions and further applications of our method.

Published in:

Geoscience and Remote Sensing Letters, IEEE  (Volume:2 ,  Issue: 3 )