Cart (Loading....) | Create Account
Close category search window
 

Classification of the auditory brainstem response (ABR) using wavelet analysis and Bayesian network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Rui Zhang ; Fac. of Eng., Ulster Univ., Northern Ireland, UK ; McAllister, G. ; Scotney, B. ; McClean, S.
more authors

The auditory brainstem response (ABR) has become a routine clinical tool for hearing and neurological assessment. In order to pick out the ABR from the background EEG activity that obscures it, stimulus-synchronized averaging of many repeated trials is necessary and it typically requires up to 2000 repetitions. This number of repetitions can be very difficult, time consuming and uncomfortable for some subjects. In this study a method combining the wavelet analysis and the Bayesian network is introduced to reduce the required number of repetitions, which could offer a great advantage in the clinical situation. The important features of the ABR are extracted by thresholding and matching the wavelet coefficients. These extracted features are then used as the variables to build up the Bayesian network for classifying the ABR. 172 ABRs with 64 repetitions are applied in this study to learn the Bayesian network and estimate the conditional probability tables (CPTs). A further 142 ABRs with 64 repetitions are used to test the network. Moreover, this Bayesian network can also be applied to classify the ABRs with 128 repetitions.

Published in:

Computer-Based Medical Systems, 2005. Proceedings. 18th IEEE Symposium on

Date of Conference:

23-24 June 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.