By Topic

A data mining based approach for the EEG transient event detection and classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Exarchos, T.P. ; Dept. of Comput. Sci., Ioannina Univ., Greece ; Tzallas, A.T. ; Fotiadis, D.I. ; Konitsiotis, S.
more authors

An automated methodology which detects transient events in EEG recordings and classifies those as epileptic spikes, muscle activity, eye blinking activity and sharp alpha activity is presented. It is based on data mining algorithms and includes four stages: (I) EEG preprocessing and transient events detection, (II) clustering of transient events and feature extraction, (III) feature discretization and (IV) association rule mining and classification. The methodology is evaluated using a dataset of 25 EEG recordings and the obtained overall accuracy is 84.35%. The major advantage of our approach is that it is able to provide interpretation for the decisions made since it is based on a set of association rules.

Published in:

Computer-Based Medical Systems, 2005. Proceedings. 18th IEEE Symposium on

Date of Conference:

23-24 June 2005