Cart (Loading....) | Create Account
Close category search window
 

Articulated structure from motion by factorization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tresadern, P. ; Dept. of Eng. Sci., Oxford Univ., UK ; Reid, I.

Multibody affine structure from motion (SFM) methods commonly assume independent motion between objects such that the 'measurement matrix' has rank 4k. When multiple views are available, each object is then independently calibrated to a metric co-ordinate frame. However, articulated motion results in a further decrease in rank - a fact that we exploit to detect articulated objects and determine their degrees of freedom using simple linear methods. Furthermore, these objects cannot be recovered and calibrated independently since this violates articulation constraints. We show that articulation constraints can be imposed during factorization and self-calibration to recover consistent 3D structure and motion, from which link lengths and joint angles can be computed. The stability of the method is evaluated using synthetic data for comparison with ground truth and results are also presented for real image sequences.

Published in:

Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on  (Volume:2 )

Date of Conference:

20-25 June 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.