By Topic

Bayesian 3D modeling from images using multiple depth maps

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Gargallo, P. ; INRIA, Rhone-Alpes, France ; Sturm, P.

This paper addresses the problem of reconstructing the geometry and color of a Lambertian scene, given some fully calibrated images acquired with wide baselines. In order to completely model the input data, we propose to represent the scene as a set of colored depth maps, one per input image. We formulate the problem as a Bayesian MAP problem which leads to an energy minimization method. Hidden visibility variables are used to deal with occlusion, reflections and outliers. The main contributions of this work are: a prior for the visibility variables that treats the geometric occlusions; and a prior for the multiple depth maps model that smoothes and merges the depth maps while enabling discontinuities. Real world examples showing the efficiency and limitations of the approach are presented.

Published in:

Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on  (Volume:2 )

Date of Conference:

20-25 June 2005