By Topic

Learning spatiotemporal T-junctions for occlusion detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Apostoloff, N. ; Robotics Res. Group, Oxford Univ., UK ; Fitzgibbon, A.

The goal of motion segmentation and layer extraction can be viewed as the detection and localization of occluding surfaces. A feature that has been shown to be a particularly strong indicator of occlusion, in both computer vision and neuroscience, is the T-junction; however, little progress has been made in T-junction detection. One reason for this is the difficulty in distinguishing false T-junctions (i.e. those not on an occluding edge) and real T-junctions in cluttered images. In addition to this, their photometric profile alone is not enough for reliable detection. This paper overcomes the first problem by searching for T-junctions not in space, but in space-time. This removes many false T-junctions and creates a simpler image structure to explore. The second problem is mitigated by learning the appearance of T-junctions in these spatiotemporal images. An RVM T-junction classifier is learnt from hand-labelled data using SIFT to capture its redundancy. This detector is then demonstrated in a novel occlusion detector that fuses Canny edges and T-junctions in the spatiotemporal domain to detect occluding edges in the spatial domain.

Published in:

Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on  (Volume:2 )

Date of Conference:

20-25 June 2005