By Topic

Blob segmentation using joint space-intensity likelihood ratio test: application to 3D tumor segmentation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Okada, K. ; Siemens Corp. Res. Inc., Princeton, NJ, USA

We propose a novel semi-automatic figure-ground segmentation solution for blob-like objects in multi-dimensional images. The blob-like structure constitutes various objects of interest that are hard to segment in many application domains, such as tumor lesions in 3D medical data. The proposed solution is motivated towards computer-aided diagnosis medical applications, justifying our semi-automatic and figure-ground approach. The efficient segmentation is realized by combining the robust anisotropic Gaussian model fitting and the likelihood ratio test (LRT)-based non-parametric segmentation in joint space-intensity domain. The robustly fitted Gaussian is exploited to estimate the foreground and background likelihoods for both spatial and intensity variables. We demonstrate that the LRT with the bootstrapped likelihoods is assured to be the optimal Bayesian classification while automatically determining the LRT threshold. A 3D implementation of the proposed algorithm is applied to the lung nodule segmentation in CT data and validated with 1310 cases. Our efficient solution segments a target nodule in less than 3 seconds in average.

Published in:

Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on  (Volume:2 )

Date of Conference:

20-25 June 2005