By Topic

Full body tracking from multiple views using stochastic sampling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
R. Kehl ; Comput. Vision Lab., Zuerich, Switzerland ; M. Bray ; L. Van Gool

We present a novel approach for full body pose tracking using stochastic sampling. A volumetric reconstruction of a person is extracted from silhouettes in multiple video images. Then, an articulated body model is fitted to the data with stochastic meta descent (SMD) optimization. By comparing even a simplified version of SMD to the commonly used Levenberg-Marquardt method, we demonstrate the power of stochastic compared to deterministic sampling, especially in cases of noisy and incomplete data. Moreover, color information is added to improve the speed and robustness of the tracking. Results are shown for several challenging sequences, with tracking of 24 degrees of freedom in less than 1 second per frame.

Published in:

2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05)  (Volume:2 )

Date of Conference:

20-25 June 2005