Cart (Loading....) | Create Account
Close category search window

Corrected Laplacians: closer cuts and segmentation with shape priors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tolliver, D. ; Sch. of Comput. Sci., Carnegie Mellon Univ., Pittsburgh, PA, USA ; Miller, G.L. ; Collins, R.T.

We optimize over the set of corrected Laplacians (CL) associated with a weighted graph to improve the average case normalized cut (NCut) of a graph. Unlike edge-relaxation SDPs, optimizing over the set CL naturally exploits the matrix sparsity by operating solely on the diagonal. This structure is critical to image segmentation applications because the number of vertices is generally proportional to the number of pixels in the image. CL optimization provides a guiding principle for improving the combinatorial solution over the spectral relaxation, which is important because small improvements in the cut cost often result in significant improvements in the perceptual relevance of the segmentation. We develop an optimization procedure to accommodate prior information in the form of statistical shape models, resulting in a segmentation method that produces foreground regions which are consistent with a parameterized family of shapes. We validate our technique with ground truth on MRI medical images, providing a quantitative comparison against results produced by current spectral relaxation approaches to graph partitioning.

Published in:

Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on  (Volume:2 )

Date of Conference:

20-25 June 2005

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.