Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

A projector-camera system with real-time photometric adaptation for dynamic environments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Fujii, K. ; NTT Cyberspace Labs., NTT Corp., Yokosuka, Japan ; Grossberg, M.D. ; Nayar, S.K.

Projection systems can be used to implement augmented reality, as well as to create both displays and interfaces on ordinary surfaces. Ordinary surfaces have varying reflectance, color, and geometry. These variations can be accounted for by integrating a camera into the projection system and applying methods from computer vision. The methods currently applied are fundamentally limited since they assume the camera, projector, and scene are static. In this paper, we describe a technique for photometrically adaptive projection that makes it possible to handle a dynamic environment. We begin by presenting a co-axial projector-camera system whose geometric correspondence is independent of changes in the environment. To handle photometric changes, our method uses the errors between the desired and measured appearance of the projected image. A key novel aspect of our algorithm is that we combine a physics-based model with dynamic feedback to achieve real time adaptation to the changing environment. We verify our algorithm through a wide variety of experiments. We show that it is accurate and runs in real-time. Our algorithm can be applied broadly to assist HCI, visualization, shape recovery, and entertainment applications.

Published in:

Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on  (Volume:1 )

Date of Conference:

20-25 June 2005