Cart (Loading....) | Create Account
Close category search window
 

Two-view geometry estimation unaffected by a dominant plane

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chum, O. ; Dept. of Cybern., Czech Tech. Univ., Prague, Czech Republic ; Werner, T. ; Matas, J.

A RANSAC-based algorithm for robust estimation of epipolar geometry from point correspondences in the possible presence of a dominant scene plane is presented. The algorithm handles scenes with (i) all points in a single plane, (ii) majority of points in a single plane and the rest off the plane, (iii) no dominant plane. It is not required to know a priori which of the cases (i)-(iii) occurs. The algorithm exploits a theorem we proved, that if five or more of seven correspondences are related by a homography then there is an epipolar geometry consistent with the seven-tuple as well as with all correspondences related by the homography. This means that a seven point sample consisting of two outliers and five inliers lying in a dominant plane produces an epipolar geometry which is wrong and yet consistent with a high number of correspondences. The theorem explains why RANSAC often fails to estimate epipolar geometry in the presence of a dominant plane. Rather surprisingly, the theorem also implies that RANSAC-based homography estimation is faster when drawing nonminimal samples of seven correspondences than minimal samples of four correspondences.

Published in:

Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on  (Volume:1 )

Date of Conference:

20-25 June 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.