By Topic

Modeling and learning contact dynamics in human motion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Bissacco, A. ; Dept. of Comput. Sci., California Univ., Los Angeles, CA, USA

We propose a simple model of human motion as a switching linear dynamical system where the switches correspond to contact forces with the ground. This significantly improves the modeling performance when compared to simpler linear systems, with only marginal increase in complexity. We introduce a novel closed-form (non-iterative) algorithm to estimate the switches and learn the model parameters in between switches. We validate our model qualitatively by running simulations, and quantitatively by computing prediction errors that show significant improvements over previous approaches using linear models.

Published in:

Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on  (Volume:1 )

Date of Conference:

20-25 June 2005