Cart (Loading....) | Create Account
Close category search window
 

Discriminative density propagation for 3D human motion estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Sminchisescu, C. ; Dept. of Comput. Sci., Toronto Univ., Ont., Canada ; Kanaujia, A. ; Zhiguo Li ; Metaxas, D.

We describe a mixture density propagation algorithm to estimate 3D human motion in monocular video sequences based on observations encoding the appearance of image silhouettes. Our approach is discriminative rather than generative, therefore it does not require the probabilistic inversion of a predictive observation model. Instead, it uses a large human motion capture data-base and a 3D computer graphics human model in order to synthesize training pairs of typical human configurations together with their realistically rendered 2D silhouettes. These are used to directly learn to predict the conditional state distributions required for 3D body pose tracking and thus avoid using the generative 3D model for inference (the learned discriminative predictors can also be used, complementary, as importance samplers in order to improve mixing or initialize generative inference algorithms). We aim for probabilistically motivated tracking algorithms and for models that can represent complex multivalued mappings common in inverse, uncertain perception inferences. Our paper has three contributions: (1) we establish the density propagation rules for discriminative inference in continuous, temporal chain models; (2) we propose flexible algorithms for learning multimodal state distributions based on compact, conditional Bayesian mixture of experts models; and (3) we demonstrate the algorithms empirically on real and motion capture-based test sequences and compare against nearest-neighbor and regression methods.

Published in:

Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on  (Volume:1 )

Date of Conference:

20-25 June 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.