By Topic

A rational function lens distortion model for general cameras

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
D. Claus ; Dept. of Eng. Sci., Oxford Univ, UK ; A. W. Fitzgibbon

We introduce a new rational function (RF) model for radial lens distortion in wide-angle and catadioptric lenses, which allows the simultaneous linear estimation of motion and lens geometry from two uncalibrated views of a 3D scene. In contrast to existing models which admit such linear estimates, the new model is not specialized to any particular lens geometry, but is sufficiently general to model a variety of extreme distortions. The key step is to define the mapping between image (pixel) coordinates and 3D rays in camera coordinates as a linear combination of nonlinear functions of the image coordinates. Like a "kernel trick", this allows a linear algorithm to estimate nonlinear models, and in particular offers a simple solution to the estimation of nonlinear image distortion. The model also yields an explicit form for the epipolar curves, allowing correspondence search to be efficiently guided by the epipolar geometry. We show results of an implementation of the RF model in estimating the geometry of a real camera lens from uncalibrated footage, and compare the estimate to one obtained using a calibration grid.

Published in:

2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05)  (Volume:1 )

Date of Conference:

20-25 June 2005