By Topic

Comparisons of logistic regression and artificial neural network on power distribution systems fault cause identification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
L. Xu ; Dept. of Electr. & Comput. Eng., North Carolina State Univ., Raleigh, NC, USA ; M. -C. Chow ; X. Z. Gao

Power distribution systems play an important role in modern society. Proper outage root cause identification is often essential for effective restorations when outages occur. This paper reports on the investigation and results of two classification methods: logistic regression and neural network applied in power distribution fault cause classifier. Logistic regression is seldom used in power distribution fault diagnosis, while neural network, has been extensively used in power system reliability researches. Evaluation criteria of the goodness of the classifier includes: correct classification rate, true positive rate, true negative rate, and geometric mean. Two major distribution faults, tree and animal contact, are used to illustrate the characteristics and effectiveness of the investigated techniques.

Published in:

Proceedings of the 2005 IEEE Midnight-Summer Workshop on Soft Computing in Industrial Applications, 2005. SMCia/05.

Date of Conference:

28-30 June 2005