By Topic

Image processing approach to features extraction in classification of control chart patterns

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lavangnananda, K. ; Sch. of Inf. Technol., King Mongkut''s Inst. of Technol., Bangkok, Thailand ; Piyatumrong, A.

Control chart patterns can be used to determine behavior of system. They are vital in process control as they are used in detecting the abnormalities which may occur. Accurate identification of these charts is necessary to the efficiency and reduction of system troubleshooting time. The accuracy of the classification depends largely on how noisy the signals in these charts are. If their noise ratio is very high, this suggests that reliable classification is almost impossible. One of the major difficulties lies in differentiation between increasing and decreasing patterns especially where gradients of inclination and declination are small. This paper describes an improvement in identifying highly noisy control chart patterns by utilizing features extraction in classification using neural networks in previous works. Features, which were founded useful for the classification, are mean, standard deviation, skewness, and kurtosis. The improvement can be summarized into two factors, the introduction of two more useful features, slope and Pearson correlation coefficient, and the additional transformation derived from the original signal. This work yields better performance than previous works which used the same data set by increasing the overall accuracy from 83.30% to 90.47%.

Published in:

Soft Computing in Industrial Applications, 2005. SMCia/05. Proceedings of the 2005 IEEE Mid-Summer Workshop on

Date of Conference:

28-30 June 2005