By Topic

Wire congestion and thermal aware 3D global placement

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Balakrishnan, K. ; Sch. of Electr. & Comput. Eng., Georgia Inst. of Technol., Atlanta, GA, USA ; Nanda, V. ; Easwar, S. ; Sung Kyu Lim

The recent popularity of 3D IC technology stems from its enhanced performance capabilities and reduced wire-length. However, wire congestion and thermal issues are exacerbated due to the compact nature of these layered technologies. In this paper, we develop techniques to reduce the maximum temperature and wire congestion of 3D circuits without compromising total wirelength and via count. Our approach consists of two phases. First, we use a multi-level min-cut placement with a modified gain function for local wire congestion and dynamic power consumption reduction. Second, we perform simulated annealing together with full-length thermal analysis and global routing for global wire congestion and maximum temperature reduction. Our experimental results show smooth tradeoff among congestion, temperature, wirelength, and via.

Published in:

Design Automation Conference, 2005. Proceedings of the ASP-DAC 2005. Asia and South Pacific  (Volume:2 )

Date of Conference:

18-21 Jan. 2005