By Topic

Modern FPGA constrained placement

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Wai-Kei Mak ; Dept. of Comput. Sci., National Tsing Hua Univ., Taiwan

We consider the placement of FPGA designs with multiple I/O standards on modern FPGAs that support multiple I/O standards. We propose an efficient approach to solve the constrained I/O placement problem by 0-1 integer linear programming within a high performance placement flow. We derive an elegant 0-1 integer linear program formulation which is applicable not only for devices with symmetric I/O banks but also for devices with asymmetric I/O banks (i.e., different banks may have different sizes and/or support different subsets of I/O standards). Moreover, it is capable of handling user's prelocked I/Os. We also show that additional restrictions such as conditional usage of Vref pins can be easily incorporated. Our formulation involves only a small number of 0-1 integer variables independent of the device size or the number of I/O objects, hence our approach can comfortably handle very large problem instances. Extensive experimentation showed that the 0-1 integer linear program corresponding to a feasible instance of the constrained I/O placement problem can be solved in seconds.

Published in:

Design Automation Conference, 2005. Proceedings of the ASP-DAC 2005. Asia and South Pacific  (Volume:2 )

Date of Conference:

18-21 Jan. 2005