By Topic

Real-time, high-accuracy 3D tracking of small animals for motion-corrected SPECT imaging

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)

An optical landmark-based pose measurement and tracking system has been developed to provide 3D animal position data for a single photon emission computed tomography (SPECT) imaging system for non-anesthetized, unrestrained laboratory animals. The animal position and orientation data provides the opportunity for motion correction of the SPECT data. The tracking system employs infrared (IR) markers placed on the animal's head along with strobed IR LEDs to illuminate the reflectors. A stereo CMOS camera system acquires images of the markers through a transparent enclosure. Software routines segment the markers, reject unwanted reflections, determine marker correspondence, and calculate the 3D pose of the animal's head. Recent improvements have been made in this tracking system including enhanced pose measurement speed and accuracy, improved animal burrow design, and more effective camera positioning for enhanced animal viewing. Furthermore, new routines have been developed to calibrate the SPECT detector head positions relative to one another and to align the coordinate systems of the optical tracking cameras with the SPECT detectors. This alignment enables motion-corrected SPECT image reconstruction. Phantom experiments validate the accuracy of the tracking system to better than 0.1 mm accuracy, and live mouse tracking results demonstrate that reliable, accurate tracking measurements can be consistently achieved during the entire 360-degree SPECT image acquisition.

Published in:

Nuclear Science Symposium Conference Record, 2004 IEEE  (Volume:5 )

Date of Conference:

16-22 Oct. 2004