By Topic

Communication-driven task binding for multiprocessor with latency insensitive network-on-chip

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Lianq-Yu Lin ; Dept. of Electron. Eng., National Chiao Tung Univ., Hsinchu, Taiwan ; Cheng-Yeh Wang ; Pao-Jui Huang ; Chih-Chieh Chou
more authors

Network-on-chip is a new design paradigm for designing core based system-on-chip. It features high degree of reusability and scalability. In this paper, we propose a switch which employs the latency insensitive concepts and applies the round-robin scheduling techniques to achieve high communication resource utilization. Based on the assumptions of the 2D-mesh network topology constructed by the switch, this work not only models the communication and the contention effect of the network, but develops a communication-driven task binding algorithm that employs the divide and conquer strategy to map applications onto the multiprocessor system-on-chip. The algorithm attempts to derive a binding of tasks such that the overall system throughput is maximized. To compare with the task binding without consideration of communication and contention effect, the experimental results demonstrate that the overall improvement of the system throughput is 20% for 844 test cases.

Published in:

Design Automation Conference, 2005. Proceedings of the ASP-DAC 2005. Asia and South Pacific  (Volume:1 )

Date of Conference:

18-21 Jan. 2005