Cart (Loading....) | Create Account
Close category search window
 

Micromagnetic simulation of non uniform nanodots with perpendicular anisotropy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Dao, N. ; Syst. & Mater. for Inf. Storage, Twente Univ., Enschede, Netherlands ; Kikuchi, N. ; Abelmann, L. ; Lodder, J.C.

Multilayered Pt/[Co/Pt]5 films were fabricated into patterned dots with diameters of 120 and 200 nm by laser interference lithography. Anomalous Hall effect (AHE) measurements were used on an array of dots to measure the switching field and the effects of reversal of an area with reduced anisotropy in the dot were also investigated by micromagnetic simulation. It was shown that a reduction in switching field is caused by an area of reduced anisotropy. The effect of various combinations of a reduction in anisotropy and/or exchange constant, and the size and shape of the area were also discussed in this paper.

Published in:

Magnetics Conference, 2005. INTERMAG Asia 2005. Digests of the IEEE International

Date of Conference:

4-8 April 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.