By Topic

Single-trial dynamical estimation of event-related potentials: a Kalman filter-based approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Georgiadis, Stefanos D. ; Dept. of Appl. Phys., Univ. of Kuopio, Finland ; Ranta-aho, Perttu O. ; Tarvainen, M.P. ; Karjalainen, Pasi A.

A method for single-trial dynamical estimation of event-related potentials (ERPs) is presented. The method is based on recursive Bayesian mean square estimation and the estimators are obtained with a Kalman filtering procedure. We especially focus on the case that previous trials contain prior information of relevance to the trial being analyzed. The potentials are estimated sequentially using the previous estimates as prior information. The performance of the method is evaluated with simulations and with real P300 responses measured using auditory stimuli. Our approach is shown to have excellent capability of estimating dynamic changes form stimulus to stimulus present in the parameters of the ERPs, even in poor signal-to-noise ratio (SNR) conditions.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:52 ,  Issue: 8 )