Cart (Loading....) | Create Account
Close category search window
 

Controlled symmetries and passive walking

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Spong, M.W. ; Coordinated Sci. Lab., Univ. of Illinois, Urbana, IL, USA ; Bullo, F.

In this note, we investigate the relationship between nonlinear control and passive walking in bipedal locomotion for the general case of an n degree-of-freedom biped in three dimensional space. We introduce the notion of controlled symmetry to capture the effect of the control input on the invariance of the system Lagrangian under group action. We then show the existence of a controlled symmetry for general bipeds under the action of SO(3) taking into account not only the kinetic energy but also the potential energy and impact dynamics. We use this result to show the existence of a nonlinear control law that reproduces so-called passive gaits independent of the particular ground slope. Our contribution in this note is two-fold. First, our result contains the first rigorous proof of the existence of so-called passivity mimicking control laws that explicitly accounts for the impact dynamics. Second, whereas previous papers have studied only planar bipeds with and without knees, our result is completely general. Our results can be viewed as direct extensions of several previous results, such as passivity-based control, virtual gravity, and virtual passive dynamic walking from the planar case to general n-degrees-of-freedom (DOF) robots in three-dimensional space.

Published in:

Automatic Control, IEEE Transactions on  (Volume:50 ,  Issue: 7 )

Date of Publication:

July 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.