By Topic

Automatic learning control for unbalance compensation in active magnetic bearings

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chao Bi ; MRC Div., A*Star Data Storage Inst., Singapore, Singapore ; Dezheng Wu ; Quan Jiang ; Zhejie Liu

This paper proposes a new control scheme, automatic learning control, to eliminate unbalance effects, which adversely affect the operation of active magnetic bearings. This control method is based on time-domain iterative learning control and gain-scheduled control. The controller can utilize the optimal control currents for the unbalance compensations. In addition, the variable learning cycle and variable learning gain are employed in the learning process to achieve better performance against rotating speed fluctuations. The control algorithm does not require large memory size and intensive computation. We tested the control system in experiments, and the experimental results prove that the control method is effective over a wide range of operation speeds.

Published in:

Magnetics, IEEE Transactions on  (Volume:41 ,  Issue: 7 )