By Topic

Hybrid controller with recurrent neural network for magnetic levitation system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Faa-Jeng Lin ; Dept. of Electr. Eng., Nat. Dong Hwa Univ., Hualien, Taiwan ; Hsin-Jang Shieh ; Li-Tao Teng ; Po-Huang Shieh

We propose a hybrid controller using a recurrent neural network (RNN) to control a levitated object in a magnetic levitation system. We describe a nonlinear dynamic model of the system and propose a computed force controller, based on feedback linearization, to control the position of the levitated object. To relax the requirement of the lumped uncertainty in the design of the computed force controller, an RNN functions as an uncertainty observer to adapt the lumped uncertainty on line. The computed force controller, the RNN uncertainty observer, and a compensated controller are embodied in a hybrid controller, which is based on Lyapunov stability. The computed force controller, with the RNN uncertainty observer, is the main tracking controller, and the compensated controller compensates the minimum approximation error of the RNN uncertainty observer. To ensure the convergence of the RNN, the adaptation law of the RNN is modified by using a projection algorithm. Experimental results illustrate the validity of the proposed control design for the magnetic levitation system.

Published in:

Magnetics, IEEE Transactions on  (Volume:41 ,  Issue: 7 )