By Topic

Lifetime reliability: toward an architectural solution

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Srinivasan, J. ; Illinois Univ., Urbana, IL, USA ; Adve, S.V. ; Bose, P. ; Rivers, J.A.

Developing and maintaining industrywide standards for lifetime reliability is a critical task for all microprocessor manufacturers. Although technology scaling continues to provide significant performance benefits, increasingly smaller feature sizes and increasing power densities are accelerating the onset of wearout-based failures, thus shortening processor life. Microarchitects have traditionally treated processor lifetime reliability as a manufacturing problem, best left to device and process engineers. In current processors, manufacturers enforce lifetime reliability, or qualify it, during device design, circuit layout, manufacture, and chip test. This reliability qualification, which is application-oblivious, is based on estimates of worst case temperature and processor utilization. However, most applications will run at lower temperature and utilization, resulting in higher reliability and longer processor lifetimes than required. As a result, current reliability qualification methodologies are overly conservative, unnecessarily increasing cost or decreasing performance. Sustaining this approach will likely be infeasible in future scaled systems.

Published in:

Micro, IEEE  (Volume:25 ,  Issue: 3 )