By Topic

The fast Fourier transform for experimentalists. Part II. convolutions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Donnelly, D. ; Dept. of Phys., Siena Coll., Loudonville, NY, USA ; Rust, B.

When undergraduate students first compute a fast Fourief transform (FFT), their initial impression is often a bit misleading. The process all seems so simple and transparent: the software takes care of the computations, and it's easy to create the plots. But once they start probing, students quickly learn that like any rich scientific expression, the implications, the range of applicability, and the associated multilevel understandings needed to fully appreciate the subtleties involved take them far beyond the basics. Even professionals find surprises when performing such computations, becoming aware of details that they might not have fully appreciated until they asked more sophisticated questions. In the first of this five-part series, we discussed several basic properties of the FFT. In addition to some fundamental elements, we treated zero-padding, aliasing, and the relationship to a Fourier series, and ended with an introduction to windowing. In this article, we'll briefly look at the convolution process.

Published in:

Computing in Science & Engineering  (Volume:7 ,  Issue: 4 )