By Topic

Algorithm for optimizing energy use and path resilience in sensor networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bush, L.A. ; Dept. of Comput. Sci., Rensselaer Polytech. Inst., Troy, NY, USA ; Carothers, C.D. ; Szymanski, B.K.

Sensor networks will change the way computers interface with our world and with each other. This transformation will be shaped by the network centric paradigm demonstrated in sensor networks. Sensor networks also require a data-centric communication paradigm to efficiently and effectively share data. Directed diffusion is a data-centric communication paradigm that forms a foundation of this paper. Energy efficient routing algorithms have been developed for directed diffusion; however, we have developed improved algorithms, which are described in this paper. We also present computer simulation results, which verify the effectiveness of previously established routing algorithms and compare them to our new and improved routing algorithms. The results show significant increase in energy efficiency and resilience. Finally, the paper incorporates effective techniques for modeling of sensor networks to demonstrate the usefulness of the new algorithms.

Published in:

Wireless Sensor Networks, 2005. Proceeedings of the Second European Workshop on

Date of Conference:

31 Jan.-2 Feb. 2005