Cart (Loading....) | Create Account
Close category search window
 

Optimizing transmission and shutdown for energy-efficient packet scheduling in sensor networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Pollin, S. ; Wireless Res./DESICS, IMEC, Leuven, Belgium ; Bougard, B. ; Mangharam, R. ; Van der Perre, L.
more authors

Energy-efficiency is imperative to enable the deployment of sensor networks with satisfactory lifetime. Conventional power management in radio communication primarily focuses independently on the physical layer, medium access control (MAC) or routing and approaches differ depending on the levels of abstraction. At the physical layer, the fundamental trade-off that exists between transmission rate and energy is exploited. This leads to the lazy scheduling approach, which consists of transmitting with the lowest power over the longest feasible duration. At MAC level, power reduction techniques tend to keep the transmission as short as possible to maximize the radio's power-off interval. Those two approaches seem conflicting and it is not clear which one is the most appropriate for a given network scenario. In this paper, we propose a transmission strategy that combines both techniques optimally. We present a cross-layer solution to determine the best transmission strategy taking into account the transceiver power consumption characteristics, the system load and the scenario constraints. Based on this approach, we derive a low complexity, on-line scheduling algorithm that can be used to optimally organize the forwarding of the sensed information from cluster heads to the data sink (uplink) in a hierarchical sensor network. Results, considering Coded Frequency Shift Keying (FSK) modulation, show that depending on the scenario, a 50% extra power reduction is achieved in a realistic uplink data gathering context, compared to the case where only transmission rate scaling or shutdown is considered.

Published in:

Wireless Sensor Networks, 2005. Proceeedings of the Second European Workshop on

Date of Conference:

31 Jan.-2 Feb. 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.