By Topic

Design and implementation of a sensor network system for vehicle tracking and autonomous interception

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

We describe the design and implementation of PEG, a networked system of distributed sensor nodes that detects an uncooperative agent called the evader and assists an autonomous robot called the pursuer in capturing the evader. PEG requires embedded network services such as leader election, routing, network aggregation, and closed loop control. Instead of using general purpose distributed system solutions for these services, we employ whole-system analysis and rely on spatial and physical properties to create simple and efficient mechanisms. We believe this approach advances sensor network design, yielding pragmatic solutions that leverage physical properties to simplify design of embedded distributed systems. We deployed PEG on a 400 square meter field using 100 sensor nodes, and successfully intercepted the evader in all runs. We confronted practical issues such as node breakage, packaging decisions, in situ debugging, network reprogramming, and system reconfiguration. We discuss the approaches we took to cope with these issues and share our experiences in deploying a realistic outdoor sensor network system.

Published in:

Wireless Sensor Networks, 2005. Proceeedings of the Second European Workshop on

Date of Conference:

31 Jan.-2 Feb. 2005