By Topic

STBC MIMO-OFDM peak-to-average power ratio reduction by cross-antenna rotation and inversion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mizhou Tan ; Dept. of Electr. & Comput. Eng., New Jersey Inst. of Technol., Newark, NJ, USA ; Latinovic, Z. ; Bar-Ness, Y.

Multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) has become a promising candidate for high performance 4G broadband wireless communications. However, like OFDM, one main disadvantage of MIMO-OFDM is that the signals transmitted on different antennas might exhibit a prohibitively large peak-to-average power ratio (PAPR). We will show that the PAPR reduction for MIMO-OFDM needs a more efficient solution than applying existing schemes for OFDM systems separately on each antenna. Further, we suggest a scheme of cross-antenna rotation and inversion (CARI), which utilizes additional degrees of freedom by employing multiple antennas. Two suboptimal schemes, termed successive suboptimal CARI (SS-CARI) and random suboptimal (RS-CARI) show significant performance advantages and lower computational complexity compared to the concurrent selective mapping (SLM) scheme proposed in Y. -L. Lee et al. (2003).

Published in:

Communications Letters, IEEE  (Volume:9 ,  Issue: 7 )