We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

High-Performance Nanowire Electronics and Photonics and Nanoscale Patterning on Flexible Plastic Substrates

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
McAlpine, M.C. ; Dept. of Chem. & Chem. Biol., Harvard Univ., Cambridge, MA, USA ; Friedman, R.S. ; Lieber, Charles M.

The introduction of an ambient-temperature route for integrating high-mobility semiconductors on flexible substrates could enable the development of novel electronic and photonic devices with the potential to impact a broad spectrum of applications. Here we review our recent studies demonstrating that high-quality single-crystal nanowires (NWs) can be assembled onto flexible plastic substrates under ambient conditions to create FETs and light-emitting diodes. We also show that polymer substrates can be patterned through the use of a room temperature nanoimprint lithography technique for the general fabrication of hundred-nanometer scale features, which can be hierarchically patterned to the millimeter scale and integrated with semiconductor NWs to make high-performance FETs. The key to our approach is the separation of the high-temperature synthesis of single-crystal NWs from room temperature solution-based assembly, thus enabling fabrication of single-crystal devices on virtually any substrate. Silicon NW FETs on plastic substrates display mobilities of 200 cm2-V-1-s-1, rivaling those of single-crystal silicon and exceeding those of state-of-the-art amorphous silicon and organic transistors currently used for flexible electronics. Furthermore, the generality of this bottom-up assembly approach suggests the integration of diverse nanoscale building blocks on a variety of substrates, potentially enabling far-reaching advances in lightweight display, mobile computing, and information storage applications.

Published in:

Proceedings of the IEEE  (Volume:93 ,  Issue: 7 )