By Topic

Printed Electrochemical Devices Using Conducting Polymers as Active Materials on Flexible Substrates

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Miaoxiang Chen ; Dept. of Sci. & Technol., Linkoping Univ., Norrkoping, Sweden

This paper reports some of our initial works in pursuit of a simple and low-cost method of fabricating all-organic electrochemical diodes, triodes, and transistors on flexible plastic or paper substrates. Conducting polymer poly(3,4-ethylenedioxythiophene) poly(styrene sulfonate) (PEDOT : PSS), utilized as an active component, is deposited by spin-coating or printing techniques. The devices are directly fabricated from design without the need for masks, patterns, or dies. The output characteristics of both half-wave and full-wave rectifier circuits from two-terminal diodes show stable performances at frequencies below 5 Hz. In three-terminal tunable triodes, threshold voltage can be tuned in the range between 0.25 and 1.6 V. In four-terminal transistors, ambipolar operation function can be realized in one single device. ION/IOFF current ratios of 103-104 have been achieved in the triode and transistor at operating voltages below 3 V. In addition, the device applications in electrochromic displays, logical circuits, as well as the switching speed of the circuits and device stability, are discussed.

Published in:

Proceedings of the IEEE  (Volume:93 ,  Issue: 7 )