By Topic

Automated classification and analysis of the calcium response of single T lymphocytes using a neural network approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
S. J. Payne ; Dept. of Eng. Sci., Univ. of Oxford, UK ; H. P. Arrol ; S. V. Hunt ; S. P. Young

The gene activities in T lymphocytes that regulate immune responses are influenced by Ca2+ ([Ca2+]i). The intracellular calcium signals are highly heterogeneous and vitally important in determining the immune outcome. The signals in individual cells can be measured using fluorescence microscopy but to group the cells into classes with similar signal kinetics is currently laborious. Here, we demonstrate a method for the automated classification of the responses into four categories formerly identified by an expert's inspection. This method comprises characterising the response by a second-order model, performing frequency analysis, and using derived features as inputs to two multilayer perceptron neural networks (NNs). We compare the algorithm's performance on an example data set against the human classification: it was found to classify identically more than 70% of the data, despite small sample sizes in two categories and significant overlap between the other two classes. The group characterized by an oscillating signal showed the presence of a number of frequencies, which may be important in determining gene activation. A classification threshold enables the automatic identification of patterns with a low-classification certainty. Future refinement of the algorithm may allow the identification of more classes, which may be important in different immune responses associated with disease.

Published in:

IEEE Transactions on Neural Networks  (Volume:16 ,  Issue: 4 )