By Topic

Color clustering and learning for image segmentation based on neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Guo Dong ; DSO Nat. Labs., Singapore, Singapore ; Ming Xie

An image segmentation system is proposed for the segmentation of color image based on neural networks. In order to measure the color difference properly, image colors are represented in a modified L*u*v* color space. The segmentation system comprises unsupervised segmentation and supervised segmentation. The unsupervised segmentation is achieved by a two-level approach, i.e., color reduction and color clustering. In color reduction, image colors are projected into a small set of prototypes using self-organizing map (SOM) learning. In color clustering, simulated annealing (SA) seeks the optimal clusters from SOM prototypes. This two-level approach takes the advantages of SOM and SA, which can achieve the near-optimal segmentation with a low computational cost. The supervised segmentation involves color learning and pixel classification. In color learning, color prototype is defined to represent a spherical region in color space. A procedure of hierarchical prototype learning (HPL) is used to generate the different sizes of color prototypes from the sample of object colors. These color prototypes provide a good estimate for object colors. The image pixels are classified by the matching of color prototypes. The experimental results show that the system has the desired ability for the segmentation of color image in a variety of vision tasks.

Published in:

IEEE Transactions on Neural Networks  (Volume:16 ,  Issue: 4 )