Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). We apologize for the inconvenience.
By Topic

A holistic approach to designing energy-efficient cluster interconnects

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Eun Jung Kim ; Dept. of Comput. Sci. & Eng., Texas A&M Univ., College Station, TX, USA ; Link, G.M. ; Ki Hwan Yum ; Vijaykrishnan, N.
more authors

Designing energy-efficient clusters has recently become an important concern to make these systems economically attractive for many applications. Since the cluster interconnect is a major part of the system, the focus of this paper is to characterize and optimize the energy consumption in the entire interconnect. Using a cycle-accurate simulator of an InfiniBand Architecture (IBA) compliant interconnect fabric and actual designs of its components, we investigate the energy behavior on regular and irregular interconnects. The energy profile of the three major components (switches, network interface cards (NICs), and links) reveals that the links and switch buffers consume the major portion of the power budget. Hence, we focus on energy optimization of these two components. To minimize power in the links, first we investigate the dynamic voltage scaling (DVS) algorithm and then propose a novel dynamic link shutdown (DLS) technique. The DLS technique makes use of an appropriate adaptive routing algorithm to shut down the links intelligently. We also present an optimized buffer design for reducing leakage energy in 70nm technology. Our analysis on different networks reveals that, while DVS is an effective energy conservation technique, it incurs significant performance penalty at low to medium workload. Moreover, energy saving with DVS reduces as the buffer leakage current becomes significant with 70nm design. On the other hand, the proposed DLS technique can provide optimized performance-energy behavior (up to 40 percent energy savings with less than 5 percent performance degradation in the best case) for the cluster interconnects.

Published in:

Computers, IEEE Transactions on  (Volume:54 ,  Issue: 6 )