By Topic

Genetic approach to minimizing energy consumption of VLSI processors using multiple supply voltages

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hariyama, M. ; Graduate Sch. of Inf. Sci., Tohoku Univ., Sendai, Japan ; Aoyama, T. ; Kameyama, M.

This paper presents an efficient search method for a scheduling and module selection problem using multiple supply voltages so as to minimize dynamic energy consumption under time and area constraints. The proposed algorithm is based on a genetic algorithm so that it can find near-optimal solutions in a short time for large-size problems, n efficient search can be achieved by crossover that prevents generating nonvalid individuals and a local search is also utilized in the algorithm. Experimental results for large-size problems with 1,000 operations demonstrate that the proposed method can achieve significant energy reduction up to 50 percent and can find a near-optimal solution (within 2.8 percent from the lower bound of optimal solutions) in 10 minutes. On the other hand, the ILP-based method cannot find any feasible solution in one hour for the large-size problem, even if a state-of-art mathematical programming solver is used.

Published in:

Computers, IEEE Transactions on  (Volume:54 ,  Issue: 6 )