By Topic

Supervised hidden Markov model learning using the state distribution oracle

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
L. G. Moscovich ; Dept. of Comput. Sci., Louisiana State Univ., Baton Rouge, LA, USA ; Jianhua Chen

Hidden Markov models (HMMs) are probabilistic models with applications across a large number of fields, most prominently Speech Recognition and Computational Biology. In this paper, we propose a polynomial-time algorithm for learning the parameters of a first order HMM by using a state distribution probability (SD) oracle. The SD oracle provides the learning algorithm with the state distribution corresponding to a query string in the target model. The SD oracle is necessary for efficient learning in the sense that the consistency problem for HMMs, where a training set of state distribution vectors such as those supplied by the SD oracle is used but without the ability to query on specific strings, is NP-complete. The algorithm proposed here is an extension to an algorithm described by Tzeng for learning probabilistic automata (PA) using the SD oracle.

Published in:

Cybernetics and Intelligent Systems, 2004 IEEE Conference on  (Volume:1 )

Date of Conference:

1-3 Dec. 2004