By Topic

Power quality monitoring system using wavelet-based neural network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Hongkyun Kim ; Chungbuk Nat. Univ., South Korea ; Jinmok Lee ; Choi, J. ; Sanghoon Lee
more authors

This paper presents a wavelet-based neural network technology for the detection and classification of the various types of power quality disturbances. Power quality phenomena are short-time problems and of many varieties. Particularly, the transients happen during very short durations to the nano- and microsecond. Thus, a method for detecting and classifying transient signals at the same time and in an automatic way is recommended. The proposed wavelet network (WN) combines the properties of the wavelet transform and the advantages of neural networks. Especially, the additional feature extraction to improve the recognition rate is considered. The configuration of the hardware of WN (PQ-DAS) and some case studies are described.

Published in:

Power System Technology, 2004. PowerCon 2004. 2004 International Conference on  (Volume:1 )

Date of Conference:

21-24 Nov. 2004