By Topic

Probability hypothesis density-based multitarget tracking with bistatic range and Doppler observations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
M. Tobias ; Sch. of Electr. & Comput. Eng., Georgia Inst. of Technol., Atlanta, GA, USA ; A. D. Lanterman

R.P.S. Mahler's probability hypothesis density (PHD) provides a promising framework for the passive coherent location of targets observed via multiple bistatic radar measurements. A particle filter implementation of the Bayesian PHD filter is applied to target tracking using both range and Doppler measurements from a simple non-directional receiver that exploits non-cooperative FM radio transmitters as its 'illuminators of opportunity'. Signal-to-noise ratios, probabilities of detection and false alarm and bistatic range and Doppler variances are incorporated into a realistic two-target scenario. Bistatic range cells are used in calculating the birth particle proposal density. The tracking results are compared to those obtained when the same tracker is used with range-only measurements. This is done for two different probabilities of false alarm. The PHD particle filter handles ghost targets well and has improved tracking performance when incorporating Doppler measurements along with the range measurements. This improved tracking performance, however, comes at the cost of requiring more particles and additional computation.

Published in:

IEE Proceedings - Radar, Sonar and Navigation  (Volume:152 ,  Issue: 3 )