By Topic

Horizontal current bipolar transistor (HCBT) process variations for future RF BiCMOS applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
T. Suligoj ; Dept. of Electr. & Electron. Eng., Hong Kong Univ. of Sci. & Technol., China ; J. K. O. Sin ; K. L. Wang

Two different process designs of horizontal current bipolar transistor (HCBT) technology suitable for future RF BiCMOS circuits are presented. The active transistor region is built in the defect-free sidewall of 900-nm-wide n-hills on a [110] wafer. The collector n-hill region is partially etched at the extrinsic base-collector periphery, whereas the extrinsic base is self-protected, resulting in reduced collector-base capacitance (CBC) and minimized volume of the extrinsic regions. The effect of doping levels at different regions on the transistor performance is examined in the two process designs. The fabricated HCBTs exhibit cutoff frequencies (fT) from 19.2 to 25.6 GHz, maximum frequencies of oscillations (fmax) from 32.2 to 39.6 GHz, and collector-emitter breakdown voltages (BVCEO) between 4 and 5.2 V, which are the highest fT and the highest fT·BVCEO product compared to existing silicon-on-insulator (SOI) lateral bipolar transistors (LBTs). The compact nature of the HCBT structure and low-cost technology make it suitable for integration with advanced pillar-like CMOS and SOI CMOS devices.

Published in:

IEEE Transactions on Electron Devices  (Volume:52 ,  Issue: 7 )