Cart (Loading....) | Create Account
Close category search window
 

Device and technology evolution for Si-based RF integrated circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

11 Author(s)
Bennett, H.S. ; Nat. Inst. of Stand. & Technol., Gaithersburg, MD, USA ; Brederlow, R. ; Costa, J.C. ; Cottrell, P.E.
more authors

The relationships between device feature size and device performance figures of merit (FoMs) are more complex for radio frequency (RF) applications than for digital applications. Using the devices in the key circuit blocks for typical RF transceivers, we review and give trends for the FoMs that characterize active and passive RF devices. These FoMs include transit frequency at unity current gain fT, maximum frequency of oscillation fMAX at unit power gain, noise, breakdown voltage, capacitor density, varactor and inductor quality, and the like. We use the specifications for wireless communications systems to show how different Si-based devices may achieve acceptable FoMs. We focus on Si complementary metal-oxide-semiconductor (CMOS), Si Bipolar CMOS, and Si bipolar devices, including SiGe heterojunction bipolar transistors, RF devices, and integrated circuits (ICs). We analyze trends in the FoMs for Si-based RF devices and ICs and show how these trends relate to the technology nodes of the 2003 International Technology Roadmap for Semiconductors. We also compare FoMs for the best reported performance of research devices and for the performance of devices manufactured in high volumes, typically more than 10 000 devices. Certain commercial equipment, instruments, or materials are identified in this article to specify adequately the experimental or theoretical procedures. Such identification does not imply recommendation by any of the host institutions of the authors, nor does it imply that the equipment or materials are necessarily the best available for the intended purpose.

Published in:

Electron Devices, IEEE Transactions on  (Volume:52 ,  Issue: 7 )

Date of Publication:

July 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.