By Topic

Near-optimal detection of geometric objects by fast multiscale methods

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
E. Arias-Castro ; Dept. of Stat., Stanford Univ., CA, USA ; D. L. Donoho ; Xiaoming Huo

We construct detectors for "geometric" objects in noisy data. Examples include a detector for presence of a line segment of unknown length, position, and orientation in two-dimensional image data with additive white Gaussian noise. We focus on the following two issues. i) The optimal detection threshold-i.e., the signal strength below which no method of detection can be successful for large dataset size n. ii) The optimal computational complexity of a near-optimal detector, i.e., the complexity required to detect signals slightly exceeding the detection threshold. We describe a general approach to such problems which covers several classes of geometrically defined signals; for example, with one-dimensional data, signals having elevated mean on an interval, and, in d-dimensional data, signals with elevated mean on a rectangle, a ball, or an ellipsoid. In all these problems, we show that a naive or straightforward approach leads to detector thresholds and algorithms which are asymptotically far away from optimal. At the same time, a multiscale geometric analysis of these classes of objects allows us to derive asymptotically optimal detection thresholds and fast algorithms for near-optimal detectors.

Published in:

IEEE Transactions on Information Theory  (Volume:51 ,  Issue: 7 )