By Topic

Constructing free-energy approximations and generalized belief propagation algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yedidia, Jonathan S. ; Cambridge Res. Lab, Mitsubishi Electr. Res. Labs, Cambridge, MA, USA ; Freeman, W.T. ; Weiss, Y.

Important inference problems in statistical physics, computer vision, error-correcting coding theory, and artificial intelligence can all be reformulated as the computation of marginal probabilities on factor graphs. The belief propagation (BP) algorithm is an efficient way to solve these problems that is exact when the factor graph is a tree, but only approximate when the factor graph has cycles. We show that BP fixed points correspond to the stationary points of the Bethe approximation of the free energy for a factor graph. We explain how to obtain region-based free energy approximations that improve the Bethe approximation, and corresponding generalized belief propagation (GBP) algorithms. We emphasize the conditions a free energy approximation must satisfy in order to be a "valid" or "maxent-normal" approximation. We describe the relationship between four different methods that can be used to generate valid approximations: the "Bethe method", the "junction graph method", the "cluster variation method", and the "region graph method". Finally, we explain how to tell whether a region-based approximation, and its corresponding GBP algorithm, is likely to be accurate, and describe empirical results showing that GBP can significantly outperform BP.

Published in:

Information Theory, IEEE Transactions on  (Volume:51 ,  Issue: 7 )