Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Modeling trajectory of dynamic clusters in image time-series for spatio-temporal reasoning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Heas, P. ; Lab. d''Informatique et Mathematiques Appliquees, Inst. de Recherche en Informatique de Toulouse, France ; Datcu, M.

During the last decades, satellites have acquired incessantly high-resolution images of many Earth observation sites. New products have arisen from this intensive acquisition process: high-resolution satellite image time-series (SITS). They represent a large data volume with a rich information content and may open a broad range of new applications. This paper presents an information mining concept which enables a user to learn and retrieve spatio-temporal structures in SITS. The concept is based on a hierarchical Bayesian modeling of SITS information content which enables us to link the interest of a user to specific spatio-temporal structures. The hierarchy is composed of two inference steps: an unsupervised modeling of dynamic clusters resulting in a graph of trajectories, and an interactive learning procedure based on graphs which leads to the semantic labeling of spatio-temporal structures. Experiments performed on a SPOT image time-series demonstrate the concept capabilities.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:43 ,  Issue: 7 )