By Topic

A novel GaAs FET with double camel-like gate structure

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Jung-Hui Tsai ; Dept. of Phys., Nat. Kaohsiung Normal Univ., Taiwan

Extremely high potential barrier height and gate turn-on voltage of a novel GaAs field-effect transistor with n/sup +//p/sup +//n/sup +//p/sup +//n double camel-like gate structure are demonstrated. The maximum electric field and potential barrier height of the double camel-like gate are substantially enhanced by the addition of another n/sup +//p/sup +/ layers in gate region, as compared with the conventional n/sup +//p/sup +//n single camel-like gate. For a 1×100 μm2 device, a potential barrier height up to 2.741 V is obtained. Experimentally, a high gate turn-on voltage up to +4.9 V is achieved because two reverse-biased junctions of the double camel-like gate absorb part of positive gate voltage. In addition, the transistor action shows a maximum saturation current of 730 mA/mm and an extrinsic transconductance of 166 mS/mm.

Published in:

Electron Device Letters, IEEE  (Volume:26 ,  Issue: 7 )