By Topic

Static leakage reduction through simultaneous Vt/Tox and state assignment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Dongwoo Lee ; Univ. of Michigan, Ann Arbor, MI, USA ; Blaauw, D. ; Sylvester, D.

Standby leakage current minimization is a pressing concern for mobile applications that rely on standby modes to extend battery life. In this paper, we propose new leakage current reduction methods in standby mode. First, we propose a combined approach of sleep-state assignment and threshold voltage (Vt) assignment in a dual-Vt process for subthreshold leakage (Isub) reduction. Second, for the minimization of gate oxide leakage current (Igate) which has become comparable to Isub in 90-nm technologies, we extend the above method to a combined sleep-state, Vt and gate oxide thickness (Tox) assignments approach in a dual-Vt and dual-Tox process to minimize both Isub and Igate. By combining Vt or Vt/Tox assignment with sleep-state assignment, leakage current can be dramatically reduced since the circuit is in a known state in standby mode and only certain transistors are responsible for leakage current and need to be considered for high-Vt or thick-Tox assignment. A significant improvement in the leakage/performance tradeoff is therefore achievable using such combined methods. We formulate the optimization problem for simultaneous state/Vt and state/Vt/Tox assignments under delay constraints and propose both an exact method for its optimal solution as well as two practical heuristics with reasonable run time. We implemented and tested the proposed methods on a set of synthesized benchmark circuits and show substantial leakage current reduction compared to the previous approaches using only state assignment or Vt assignment alone.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:24 ,  Issue: 7 )